Pythagoras Theorem

Grades 6,7,8

The Philomath Club

Lesson 4-Pythagorean Theorem

The Pythagoras theorem formula states that in a right triangle $A B C$, the square of the hypotenuse is equal to the sum of the square of the other two legs.

If $A B$ and $A C$ are the sides and $B C$ is the hypotenuse of the triangle, then: $B C^{\wedge} 2=A B^{\wedge} 2+A C^{\wedge} 2$.

In this case, AB is the base, AC is the altitude or the height, and BC i the hypotenuse.

Pythagoras theorem proof

Proof of Pythagorean Theorem Formula using the Algebraic Method.

1. Arrange four congruent right triangles in the given square $P Q R S$, whose side is $a+b$.
2. The four right triangles have b as the base, a as the height and, as the hypotenuse.
3. The 4 triangles form the inner square $W X Y Z$, with c as the four sides.
4. The area of the square $W X Y Z$ by arranging the four triangles is $c^{\wedge} 2$.

5. The area of the square PQRS with side $(a+b)=$ Area of 4 triangles + Area of the square WXYZ with side c. This means $(a+$ b) ${ }^{\wedge} 2=[4 \times 1 / 2 \times(a \times b)]+c^{\wedge} 2$. This leads to $a^{\wedge} 2+b^{\wedge} 2+2 a b=2 a b+$ Therefore, $a^{\wedge} 2+b^{\wedge} 2=c^{\wedge} 2$. Hence proved.

Some problems!

1. In a right triangle, the lengths of the legs are given, $a=6, b=8$, find the length of the hypotenuse.
2. A ladder 3.7 cm is placed against a wall in such a way that the ladder is 1.2 m away from the wall. Find the height of the wall to which the ladder reaches.
3. In $\triangle A B C, \angle A B C=100^{\circ}, \angle B A C=35^{\circ}$ and $B D \perp A C$ meets side $A C$ in D. If $B D=2 \mathrm{~cm}$, find $\angle C$, and length $D C$.
4. The triangular sidewall of the flyover has been used for the advertisement. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$, and 120 m . The advertisement yields an earning of Rs 5000 per m^2 per year. The company hired one of its walls for 3 months. How much rent did it pay?

5.In a rhombus of side 10, one of the diagonals is 12 cm long. Find the length of the second diagonal.
5. A ladder 15 m long reaches a window which is 9 m above the ground on one side of a street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 12 m high. Find the width of the street.
6. Two poles of heights 6 metres and 11 metres stand vertically on a plane ground. If the distance between their feet is 12 metres, find the distance between their tops.
7. In a given quadrilateral $A B C D$, angle $B=90$ degrees. If $A D^{\wedge} 2=A B^{\wedge} 2+B C^{\wedge} 2+C D^{\wedge} 2$, prove that angle $A C D=90$ degrees.
8. A man goes 80 m due east and then 150 m due north. How far is he from the starting point?
