(1)

$$
\begin{aligned}
& \text { Evaluate } 1^{\wedge} 2-2^{\wedge} 2+3^{\wedge} 2-4 \wedge 2+5^{\wedge} 2 \\
& -6^{\wedge} 2+\ldots \ldots+99 \wedge 2-100^{\wedge} 2 \\
& \rightarrow \quad 1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\cdots+99^{2}-100^{2} \\
& 1^{2}=|x|=1 \\
& 1^{2}-2^{2}=(1-2)(1+2) \\
& \underset{\substack{11 \\
-3}}{1-4}=(-1)(3) \\
& 3^{2}=3 \times 3=9 \\
& a^{2}-b^{2}=(a-b)(a+b) \\
& a^{2}+96-4 / 6-b^{2} \\
& =a^{2}-b^{2} \\
& \left(1^{2}-2^{2}+3^{2}-4^{2}+5^{2}-6^{2}+\cdots+99^{2}-100^{2}\right. \\
& =(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+\cdots+ \\
& (91-100)(99+100) \\
& =(-1)(1+2)+(-1)(3+4)+(-1)(5+6)+\cdots+ \\
& (-1)(99+100) \\
& =(-1)(1+2+3+4+\cdots+99+100)
\end{aligned}
$$

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Proof:-

$$
\begin{aligned}
S= & 1+2+\cdots+n \\
& +\left(\begin{array}{l}
n+(n+1)+(n+1) \\
2 S
\end{array}\right. \\
& =(n+1)+(n+1)+\cdots+(n+1) \\
2 S & =(n(n+1) \\
S & =\frac{n(n+1)}{2}
\end{aligned}
$$

our amsewr is

$$
\begin{aligned}
& =(-1) \times(\underbrace{100 \times 101}_{2}) \\
& =(-1) 5050 \\
& =-5050
\end{aligned}
$$

Q.

What are the two natural numbers whose difference is 66 and the least common multiple is 360 .

Solution:- (Vihaan's method)

$$
\text { Factors of } \begin{aligned}
360= & 1,2,3,4,5,6,8,9,10,12,15,24,30,36 \\
& 40,45,72,90,120,180,360
\end{aligned}
$$

Just bosh \ddot{i}

Solution:-
lit one number be x. St the other number be y.
so $\quad x-y=66, \quad \operatorname{LCM}(x, y)=360$

$$
\begin{aligned}
& X \cdot Y=L C M(x, y) \cdot H C F(x, y) \\
& H C F(x, y)=\operatorname{HCF}(x, y-x) \\
& H C F(10,50)=\operatorname{HCF}(10,40)=\operatorname{HCF}(10,30) \\
& =H C F(10,20)=H C K(10,10)=10 \\
& H C E(x, y)=H C F(x, y-x)=M C F(x, 66) \\
& \operatorname{HLF}(x, y) \mid x \text { and } H C F(x, y) \mid Y .
\end{aligned}
$$

$$
\begin{aligned}
& H C 8(x, y)=M C F(x, y-x)=H C F(x, 66) \mid 66 \\
& 66=6 \times 11
\end{aligned}
$$

Also LCM of X,Y $=360=6 \times 360$
So $\quad \operatorname{MCF}(x, y)=6$

$$
\begin{align*}
x-y & =66 \\
x \cdot y & =360 \times 6=2160 \\
(x+y)^{2}=(x-y)^{2}+4 \times y & =66^{2}+4 \times 2160 \\
& =11 y^{2} \tag{11}
\end{align*}
$$

So $x+y=11 y$
So $2 x=114+66=180$

$$
\Rightarrow x=90 \quad \Rightarrow \quad y=24
$$

Q. Find the largest
number which would
divide 50 and 60
leaving remainders 8 and 4 respectively.
$\rightarrow \quad$ lit the number be x.

$$
\begin{array}{rc}
\frac{0}{150} & \times \sqrt{60} \\
\frac{-}{8} & -\frac{4}{4}
\end{array}
$$

$$
\begin{array}{ll}
x \mid 50-8 & \text { and } \\
x \mid 42 & \text { and } x \mid 56-4
\end{array}
$$

So $\quad \operatorname{MCF}(42,56)=14$

