Q. Find the least number which on being divided by 5, 6, 8, 9, 12 leaves in each case a remainder 1 but when divided by 13 leaves no remainder.
Q. (b) Find the sum of all the digits of the results of the subtraction $10^{99}-99$.

$$
\begin{aligned}
& 10^{99}-99 \rightarrow \underbrace{000 \cdots 0}_{992 \text { eros }} \\
& 10^{1}=10 \\
& 10^{2}=10 \times 10=100 \\
& 10^{99}=\underbrace{10 \times 10 \times 10}_{99}-2 \\
& 2 \text { terce } \\
& 10^{3}=10 \times 10 \times 10=1000 \\
& \begin{array}{r}
1000 \ldots 90 \\
\frac{499}{999} 11
\end{array}
\end{aligned}
$$

let the number be x,

So $x-1$ is divisible by $5,6,8,9,12$.

Hence $\operatorname{lem}(5,6,8,9,12)(x-1$,
so the $\operatorname{bem}(5,6,819,12)=360(x-1 \Rightarrow x-1=360 \mathrm{k}$

So the number $x=360 \mathrm{~K}+1$

Now, $x=360 k+1$ is divisible by 13.

So we need to find the smallest k such that

$$
13 \mid x=360 k+1
$$

$\rightarrow K=10$, is the smallest.
Q. (c) Find the units digit of the number (4444) ${ }^{4444}$
Q.) A three digit number 4 a 3 is added to another three digit number 984 to give a four digit number 13 b 7 , which is divisible by 11 . Find the value of $2 \mathrm{a}+\mathrm{b}$.
\rightarrow Given $13 b_{7}$ is divisible by 11 .

So $\begin{aligned}(3+9)-(1+b) & \text { is divisible by } 11 \\ = & 9-b\end{aligned} \quad$ is divisible by 11

Since b is a digit, so $b=0,1,2, \cdots, 9$,

So $\quad 6=9$.

$$
\begin{aligned}
& 4 a 3+984=1367=1394 \\
\Rightarrow & 4 a b=1397-984=413 \Rightarrow a=1
\end{aligned}
$$

So andes is $\quad 2 a+b=2 \times 1+9=11$

$$
\begin{aligned}
& 4 a 3 \\
+ & \frac{984}{13 b 7}
\end{aligned} \Rightarrow \quad \text { so } a=0,1
$$

So if $a=0, b=8$, but $13 b 7=1387$ is not divisible by 11
So $a=1, b=9$
Q. (c) Find the units digit of the number $(4444)^{4444}$

$$
\rightarrow(\text { nnnu })^{n 444}=\underbrace{4 n 4 n \times 44 n 4 \times \operatorname{nnnn} x}_{\operatorname{snn} 4}
$$

Unit digit of $4 n 4 n^{4 n 4}$ is same as 4 44n4.

$$
\begin{aligned}
& 4^{1} \rightarrow 4 \\
& 4^{2} \rightarrow 4 \times 4=16 \quad \rightarrow 6
\end{aligned}
$$

$$
\begin{aligned}
& 4^{2} \rightarrow 4 \times 4=16 \quad \rightarrow 6 \\
& 4^{3} \rightarrow 64 \rightarrow 4 \\
& 4^{4} \rightarrow 4 \times 4 \times 4 \times 4=256 \rightarrow 6 \\
& 4^{5} \rightarrow 4 \\
& 4^{6} \rightarrow 6
\end{aligned}
$$

