(1) Solve the following equation for integer values of x and $y .(2 x+y)(5 x+3 y)=7$

Solution:- so if $x \& y$ are integers, then so is $2 x+y \& 5 x+3 y$

$$
\begin{aligned}
& (2 x+y)(5 x+3 y)=7 \\
& 7=1 \times 7 \\
& 7=-1 \times-7
\end{aligned}
$$

So $\quad 7=1 \times 7$
Coss 1

$$
(2 x+y)=1,(5 x+3 y)=7
$$

case 2

$$
(2 x+y)=7, \quad(5 x+3 y)=1
$$

Core 3

$$
(2 x+y)=-1,(5 x+3 y)=-7
$$

Case 4

$$
(2 x+4)=-7,(5 x+3 y)=-1
$$

Cass 1

$$
\begin{align*}
& (2 x+y)=1,(5 x+3 y)=7 \\
& \text { (1) } \times 3 \\
& \rightarrow 10 x+5 y=5 \\
& \Rightarrow \quad(2 x+4) \times 3=1 \times 3 \\
& 6 x+3 y=3 \tag{II}
\end{align*}
$$

(iii) - (II)

$$
\begin{array}{rl}
6 x+3 y & =3 \\
-(5 x+3 y) & =9 \\
& \\
6 x-5 x & =3-7 \\
\Rightarrow x & x-4 \\
x & =-4, y
\end{array}
$$

cose 2

$$
(2 x+y)=7, \quad(5 x+3 y)=1
$$

Solution:-

$$
\begin{align*}
& (2 x+y)=7 \tag{1}\\
& (8 x+3 y)=1
\end{align*}
$$

(1) 13, $\quad 6 x+34=21$
(III) -(ii) $\Rightarrow \quad 6 x+3 y=21$

$$
5 x+3 y=1
$$

$$
\begin{aligned}
& 6 x+3 y-(5 x+3 y)=21-1 \\
\Rightarrow & x=20
\end{aligned}
$$

$$
\Rightarrow \quad 2 x+y=7 \quad \& x=20, \quad 40+y=-7 \quad \Rightarrow \quad y=-33
$$

Cose 3

$$
\begin{array}{ll}
(2 x+y)=-1 & ,(5 x+3 y)=-7 \\
2 x+y=-1 & - \\
5 x+3 y=-7 & \text { (1) } \tag{II}
\end{array}
$$

(1) $\times 3 \quad \Rightarrow \quad 6 x+3 y=-3$
(110)-(11)

$$
\begin{align*}
& \text { 1) } \left.\begin{array}{l}
\Rightarrow 6 x+3 y-(5 x+3 y)=-3-(-7) \\
\Rightarrow \\
y=-9 \\
\\
y
\end{array} \right\rvert\, \begin{array}{l}
2 \times 4+y=-1 \\
\Rightarrow 8+y=-1 \\
\Rightarrow y=-9
\end{array} \tag{iii}
\end{align*}
$$

Case 4

$$
(2 x+4)=-7,(5 x+3 y)=-1
$$

Solution:- $(2 x+y)=-7 \quad$-(1)

$$
(5 x+3 y)=-1 \quad-(11)
$$

(1) $\times 3 \Rightarrow \quad 6 x+3 y=-21$
(ii1) - (II) $=x=-21-(-1)=-20$

So $2 \times(-20)+4=-7$

$$
\Rightarrow y=33 .
$$

