problems to ky past 2
The philomath clubs
(1) Find the ratio of the least and the greatest four digit numbers which are exactly divisible by 34 .
Ratio of two numbers $a$ and $b ; a: b=\frac{a}{b}$

$$
\text { For example Ratio of } \begin{aligned}
15 \text { and } 10=15: 10=\frac{15}{10} & =\frac{3}{2} \\
& =3: 2
\end{aligned}
$$

(2) The price of sugar being raised $50 \%$, by how much percent must a man reduce his consumption of that article so as not to increase his expenditure?
(3)

90\% of the boys of a school pass in English and 85\% in Arithmetic, 150 boys pass in both the subjects and no boy fails in both. How many boys are there in the school?
(4)

Find the digit values of $x$ and $y$ in order that the number $5 \times 16 y 5$ may be divisible by 275 .
(1) Find the ratio of the least and the greatest four digit numbers which are exactly divisible by 34 .

Ans:- smallest 4 digit number $=1000$

$$
1000=29 \times 34+14
$$

so the least four digit number divisible by $34=$

$$
1000-14+34=30 \times 34=1020
$$

largest 4 digit number $=9999$

$$
9999=294 \times 34+3
$$

So the largest 4 digit divisible by $34=9999-3$

$$
=9996=34 \times 294
$$

$$
\text { So the ratio } \begin{aligned}
1020: 9996 & =30 \times 34: 294 \times 34 \\
& =30: 294 \\
& =5: 49
\end{aligned}
$$

ilomathClub
(2) The price of sugar being raised $50 \%$, by how much percent must a man reduce his consumption of that article so as not to increase his expenditure?

Answer: $33 \frac{1}{3} \%=33.333 \cdots \%=33 . \overline{3} \%$
Solution: - suppose the price of sugar $=100$
when the price is being raised by $50.1=100+50=150$

$$
\frac{150-100}{150} \%=\frac{50}{150} \% 33+\frac{1}{3} \%
$$

Original solution:- let price of sugar be $X$. And the monthly consumption of sugar be $y$.

Since, the price of sugar is rassed by $50 \%$

New price of sugar is $\quad \frac{50}{100} \times x+x=\frac{3 x}{2}$

The man buys $y$ amount of sugar of price $x$,

$$
\text { Total money }=X Y
$$

New price of sugar is $\frac{3 x}{2}$ so now amount of sugar (mosithy) $=\frac{2}{3} 4$.

Originally, the consumption was $y$.

Now, he buys $\frac{2}{3} y$ amount of sugar

$$
\begin{aligned}
& \text { So the reduction }(\%)=\frac{4-\frac{2}{3} \varphi}{y} \times 100 i=\frac{\frac{1}{3} y}{y} \times \frac{100 \%}{y} \frac{1}{3} \cdot 1 \cdot \times 100 \\
& =\frac{100}{3}=33.3 \% \\
& \text { reduction } \%=\text { original price }- \text { new prissy } \\
& \text { orignal poise }
\end{aligned}
$$

(3) $90 \%$ of the boys of a school pass in English and $85 \%$ in Arithmetic, 150 boys pass in both the subjects and no boy fails in both. How many boys are there in the school?
let the total number of boys be $x$.
let $E$ denote the no boys who passed in English let $A$ den of the no of boy who passed in aritunctic let $M$ dante the wo of bays who passed in bothy


So basically $X=E+A-M$

$$
=\frac{90 \cdot 20}{100}+\frac{85}{100} x-150
$$

$$
\begin{aligned}
100 x & =90 x+85 x-15000 \\
& =175 x-150
\end{aligned}
$$

$$
\begin{aligned}
15000 & =75 x \\
\Rightarrow x & =200
\end{aligned}
$$

(4) Find the digit values of $x$ and $y$ in order that the number $5 \times 16 y 5$ may be divisible by 275 .

Solution:- $\quad 275=25 \times 11$
Thus $5 \times 16$ y 5 is divisible by 275
$\Rightarrow 5 \times 16 \times 5$ is divisible by both 25 and 11 .
but the $5 \times 16 y 5$ is divisible by 11
if $5+1+4-(x+6+5)$ is divisible by 11 $=y-x-5$ is divisible by 11

Test divisibility of 25 .

$$
5 \times 1645=5 \times 1600+45
$$

So $25 \mid Y 5 \quad \Rightarrow \quad y=2,7$
Now we have $y-x-5$ divisible by 11
if $y=2$, then $x=8 \rightarrow 581625 \div 275$

$$
=2115
$$

if $y=7$, then $x=2 \rightarrow 521675 \div 275$

$$
=1897
$$

