

Polygons (The new notes)

What is a figure?

A geometric form consisting of point

point, lines, curved lines

ignore pli.

f

a e planes

Types of figure:

· CLOSED: They are closed

· OPEN: They are open

POLYGONS :-

· Closed figure with straight edges

(circle is not a polygon)

· Triangle

· Quadrilateral

cuemath

gor allel lines	Typ
Lines Wines When interes	hìch

oppossik sides equal and for Nell

Quadrilateral	Shape
Square	120
Rectangle	
Parallelogram	***
Trapezium	
Rhombus	
Kite	P C B

- and all angles = 90°
- -> Oppossik sides equal and porabel angles = 90.
- -> One pair of sides
 parallel
- → all sides equal,
 diagonals are perpendicular
 to each other
- → AB=AD, BC=DC

Q. In a rhombus, opposite angles are equal (same way for parallelogram)

In
$$\triangle$$
 ABC, \triangle ADC

AB = AD

BC = DC

Eyhombus has all 4 sides

equal \exists

AC = AC

Adjacent sides

Any two sides with a common end point are called the adjacent sides of the polygon.

Adjacent vertices

The end points of the same side of a polygon are called the adjacent vertices.

Diagonals

The line segments obtained by joining vertices which are not adjacent are called the diagonals of a polygon.

Concave polygon:

If a diagonal lies outside a polygon, then the polygon is called a concave polygon.

Convex polygon:

If all the diagonals lie inside the polygon, then the polygon is said to be a convex polygon.

No of diagonals in n-gon:

No of diagonalin n-gon = n(n-3)

Proof: -

- · Now we can choose a vertex in n different ways (n vertèces)
- · each vertex is endpoint of n-3
 diagonals (why? Try a few examples)
- · So the number of diagonals = n(n-3)
- Novever every diagonal is counted 2 time So we must divide by 2. (why?)
- o Hence n(n-3) any diagonal has 2 endpoints

P.S. Try veritying for a few values

(We verified in the class)