

Poly
ODS (runnoners)
ignore pis.
What is a figure?
\rightarrow A geometric form consisting of point, lines, curved lines e planes \downarrow point, lines, \downarrow, \downarrow

Types of figure:

- CLOSED:- They are closed

- OPEN :- Thy are open

POLYGONS:-

- Closed figure with straight edges
(circle is not a polygon)
- Triangle

- Quadrilateral
Q. In a rhombus, opposite angles are equal (same way for paralulogram)

In $\triangle A B C, \triangle A D C$
$A B=A D$
$B C=D C \quad[$ rhombus has all 4 sides

$$
A C=A C
$$ equal]

Hence by sss congruency,

$$
\begin{aligned}
\triangle A B C & \cong \triangle A D C \\
\Rightarrow \angle A B C & =\angle A D C \\
\text { Similarly } \quad \angle B A D & =\angle B C D
\end{aligned}
$$

Adjacent sides
Any two sides with a common end point are called the adjacent sides of the polygon.
Adjacent vertices
The end points of the same side of a polygon are called the adjacent vertices.
Diagonals
The line segments obtained by joining vertices which are not adjacent are called the diagonals of a polygon. Concave polygon:
If a diagonal lies outside a polygon, then the polygon is called a concave polygon.
Convex polygon:
If all the diagonals lie inside the polygon, then the polygon is said to be a convex polygon.

- A, B are adjacent vertices $($ side $A B$)
- A, D are not adject
$\longrightarrow \quad A B, B C$ are adjacent Y $E D, B C$ are not adjacent

Types of Polygons

| Triangle |
| :--- | :--- |
| - Has 3 sides and |
| 3 vertices |
| - Has no diagonals |
| - Sum of the interior |
| angles is 180° |\quad| Quadrilateral |
| :--- |
| - Has 4 sides and |
| 4 vertices |
| - Has two diagonals |
| - Sum of the interior |
| angles is 360° |

n-gin for $n \geqslant 12$.

No of diagonals in n-gon:
No of diagonals in n-gon $=\frac{n(n-3)}{2}$

Proof:-

- Now we can choose a vertex in n different ways (n vertices)
- each vertex is endpoint of $n-3$ diagonals (Why? Try a few examples)
- So the number of diagonals $=n(n-3)$
- However every diagonal is counted 2 time

So we must divide by 2 . (why?)

- Hence $\frac{n(n-3)}{2}$
t be cause any diagonal has 2 endpoints
P.S. Toy verifying for a few values (we verifich in the class)

