Patterns \mathcal{E} Sequences

The Philomath Club

ThePhilomathClub Hello!

I am here to teach you guys! I am in grade 11. Let's get into some problems!

Would you Rather?

The Philomath Club

Would you Rather?

have the ability to see 10 minutes into the future or 150 years into the future?

Would you Rather?

be forced to sing along or dance to every single song you hear?

Would you Rather?

swim in a pool full of Nutella or a pool full of maple syrup?

Would you Rather?

be 11 feet tall or nine inches tall?

Would you Rather?

win $\$ 25,000$ or your best friend win $\$ 100,000$

Ready?

If you get doubts please ask!

Now we are ready!

 Let's start with the first set of slides
INTRO

$1,3,5,7,9,11, ?$

$3,6,9,12,15,18,21$, ?

Introduction

Guess the Pattern
$\triangleright 1,2,3,4,5,6,7, ?$
$\triangleright 1,3,5,7,9,11, ?$
$2,4,6,8,10,12,14$, ?
$3,6,9,12,15,18,21$, ?
$100,200,300,400,500,600,700$, ?

Fibonacci is cool!

$1,1,2,3,5,8,13,21,34, \ldots$
Identify the pattern.

Solution : 1, 1, 2, 3, 5, 8, 13, 21, 34, . \&

Notice that
$1+1=2, \quad 1+2=3, \quad 2+3=5, \quad 3+5=8, \quad 5+8=13$,
$8+13=21, \quad 13+21=34, \quad 21+34=55, \quad 34+55=89, \ldots$.

- The Fibonacci Sequence is the series of numbers:

$$
0,1,1,2,3,5,8,13,21,34, \ldots
$$

- Fibonacci is a very common sequence and appear almost everywhere!

Let's see a few examples.

Who was Fibonacci?

Fibonacci, also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano, was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages".

Sequences and terms:

A sequence is a list of numbers.
Example:
$1,3,5,7,9,11,13, \ldots$
And note that a sequence can be completely random like $10002,2,273,736677,65342,736,289, \ldots$.

See? We are just listing out the numbers!

What are Terms?

From the sequence $1,3,5,7,9,11,13,15, \ldots$
What is the pattern you observe?
We say 1 is the first term.
We say 3 is the second term.
We say 7 is the fourth term.
What is the seventh term here?

Let's practice some more on Terms!

$\square \quad$ Identify the 6th term of the sequence
$1,1,2,3,5,8,13,21,34, \ldots$.
$\square \quad$ Identify the 7th term of the sequence $1,2,6,24,120,720$

प1 Identify the 9th term of the sequence $1,4,9,16,25,36,49,64, \ldots$.

The mathematical form of expressing a term

- We denote the first term of a sequence T_{1}
- The second term is T_{2}
- The third term is T_{3}
- The fourth term is T_{4}
- What would the tenth term be?
- What would be the 99th term?

Back to Fibonacci Sequence 1

We have $1,2,3,5,8,13,21,34, \ldots$. Identify the pattern.

- So T_{1} is $1, T_{2}$ is 2 ,
T_{3} is $3, T_{4}$ is 5 ,
T_{5} is $8, \mathrm{~T}_{6}^{4}$ is 13 ,
T_{7} is 21 and so on

Back to Fibonacci Sequence 2

\square As we had $1+2=3, \quad 2+3=5, \quad 3+5=8$, $5+8=13,8+13=21, \quad 13+21=34$, $21+34=55, \quad 34+55=89, \ldots$.

So we have $T_{1}+T_{2}=T_{3}, T_{2}+T_{3}=T_{4}$ and so on.

Final Fibonacci Sequence

The general term of Fibonacci Sequence is

$$
T_{n-1}+T_{n}=T_{n+1}
$$

Speed Round

$1,2,3,4,5,6$, $7, \ldots$

1, 7, 13, 19, 25, 31,

$$
\begin{gathered}
1+6=7 \\
7+6=13 \\
13+6=19 \\
19+6=25 \\
25+6=31 \\
31+6=37
\end{gathered}
$$

$1,4,9,25$ 49 ,

$$
\begin{aligned}
& 1 \times 1=1 \\
& 2 \times 2=1 \\
& 3 \times 3=9 \\
& 4 \times 4=16 \\
& 5 \times 5=25 \\
& 6 \times 6=36
\end{aligned}
$$

1, 4, 7, 10, 13,
 $16,19,22,25$,

$$
\begin{gathered}
1+3=4 \\
4+3=7 \\
7+3=10 \\
10+3=13 \\
13+3=16
\end{gathered}
$$

25, 23, 21, 19, $17,15, \ldots$

$$
\begin{aligned}
& 25-2=23 \\
& 23-2=21 \\
& 21-2=19 \\
& 19-2=17 \\
& 17-2=15 \\
& 15-3=13
\end{aligned}
$$

1, 8, 27,
 64,125,216,343

 .512, ...$$
\begin{gathered}
1 \times 1 \times 1=1 \\
2 \times 2 \times 2=8 \\
3 \times 3 \times 3=27 \\
4 \times 4 \times 4=64 \\
5 \times 5 \times 5=125
\end{gathered}
$$

2, 6, 18,
 54,162,486, ...

$$
\begin{aligned}
2 \times 3 & =6 \\
6 \times 3 & =18 \\
18 \times 3 & =54 \\
54 \times 3 & =162 \\
162 \times 3 & =486 \\
486 \times 3 & =1458
\end{aligned}
$$

1, 3, 6, 10, 15,
 21, 28, 36, 45,

$$
\begin{gathered}
1=1 \\
1+2=3 \\
1+2+3=6 \\
1+2+3+4=10 \\
1+2+3+4+5=15 \\
1+2+3+4+5+6=21
\end{gathered}
$$

$6,8,12,18,26 \Rightarrow$ $36, \ldots$.

$$
\begin{gathered}
6+2=8 \\
8+4=12 \\
12+6=18 \\
18+8=26 \\
26+10=36 \\
36+12=48
\end{gathered}
$$

https://mathigon.org/course/sequences/introduction

