Modular arithmetic
-) What happens when we divide $100 \div 40$?

$$
\rightarrow \quad 100=40 \times 2+26
$$

$$
Q=2 \text {, Remainder }=20
$$

- $\equiv \rightarrow$ congruent to $^{\prime \prime}$
$\rightarrow A \equiv B \bmod C$
when C divides $A-B$.
2 divides 4 because 4 is a multiple of 2 -
$2 \mid 4 \rightarrow 2$ divides 4
5 docent divide $7 \rightarrow 5 \nmid 7$
Example:- $25 \equiv 3 \bmod 11$
as $\quad 71 / 25-3=22$ So $25 \equiv 3 \bmod 11$
introduce a few notation.
- $A|B| \quad \rightarrow \quad B$ is a multiple of A.
- \quad " "implies"

Since $2 \times 4=8 \Rightarrow 8$ is divisible by 2

- \Longleftrightarrow "if and moly if'

Suhan eats icecream if and only it it is Sunday.

Swhan eats iclecream \Leftrightarrow if it is Sunday.
-) Modular arithmetic
we say $A \equiv B \bmod C \quad C \mid A-B_{-}$
C if $C \backslash A-B$, then $A \equiv B \bmod C$
If $A=B \operatorname{rod} C$, then $C \backslash A$ -

Exercise:- State T / F,

1) 24 三 $2 \bmod 11$ (T)

$$
\text { 11) } 24-2=22
$$

2) $25 \equiv 15 \bmod 10 \quad(T)$
les $10 \backslash 25-15=10$
3) \quad| 100 | $\equiv 24 \bmod 37$ |
| ---: | :--- |
| 17 | (F) $100-24=76$ |
4) $45 \equiv 568 \bmod 523$ (I)

$$
45-568=-523
$$

and 523)-523.
5)
6) $-20=-20 \bmod 192(T)=\begin{aligned} &=20 \times 20 \\ &=0\end{aligned}$ $192 \mid-20-(-20)=0$

$$
x=1,21, \ldots, 69
$$

Ex:- Given $100 \equiv x \bmod 70 \operatorname{lnd} 0<x<70$. Find X.

$$
\begin{aligned}
& 2<x<15 \rightarrow x=3,4, \ldots, 14 \\
& \rightarrow \sin c e \quad 100 \equiv x \bmod 70 \Rightarrow 701100^{-x}
\end{aligned}
$$

So $100-x$ is a multiple of 70 .
Since $0<x<70, \quad x=1,2,3, \cdots, 69$

$$
\begin{aligned}
& 100-x=99,98, \cdots, 32,31, \\
& 99>100-x>31,
\end{aligned}
$$

has only 1 multiple of 70 which 70

So $\quad 100-x=70$

$$
\Rightarrow x=100-70=30
$$

$\rightarrow 2017$ cat 11 PI
Q.

Two numbers when divided by a certain divisor have remainders 3 and 4 respectively. When the two numbers are added and their sum is divided by the same divisor the remainder is 2. What is the divisor ?
$\rightarrow A$ is dividend by K, remainder is 3
B is divided by k, rebounds is 4 $A+B$ is divided by K, remainder must be $3^{71} 4$ (ear example, 39 is divided by $19, r=1$

$$
\begin{aligned}
& 44 \text { is } 11 \quad \text { "1 } 11, \gamma=6 \\
& 39+44=83
\end{aligned} \begin{aligned}
& \text { is divided so } 19, \gamma-7 \\
& \\
& (+6)
\end{aligned}
$$

$7 \equiv 2 \bmod k$

$$
\Rightarrow k \mid 7-2 \Rightarrow k 15 \Rightarrow k=5
$$

The two numbers, when divided by a divisor leave remainders 3 and 4.
When we add the two numbers, their remainders add up to $3+4=7$ But when divided by the original divisor this sum leaves remainder equal to 2 .
Since $7=5 \times 1+2$, the divisor must be 5 .

